An evaluation of deep neural network approaches for traffic speed prediction

Detta är en Master-uppsats från KTH/Skolan för elektroteknik och datavetenskap (EECS)

Sammanfattning: The transportation industry has a significant effect on the sustainability and development of a society. Learning traffic patterns, and predicting the traffic parameters such as flow or speed for a specific spatiotemporal point is beneficial for transportation systems. For instance, intelligent transportation systems (ITS) can use forecasted results to improve services such as driver assistance systems. Furthermore, the prediction can facilitate urban planning by making management decisions data driven. There are several prediction models for time series regression on traffic data to predict the average speed for different forecasting horizons. In this thesis work, we evaluated Long Short-Term Memory (LSTM), one of the recurrent neural network models and Neural decomposition (ND), a neural network that performs Fourier-like decomposition. The results were compared with the ARIMA model. The persistent model was chosen as a baseline for the evaluation task. We proposed two new criteria in addition to RMSE and r2, to evaluate models for forecasting highly variable velocity changes. The dataset was gathered from highway traffic sensors around the E4 in Stockholm, taken from the “Motorway Control System” (MCS) operated by Trafikverket. Our experiments show that none of the models could predict the highly variable velocity changes at the exact times they happen. The reason was that the adjacent local area had no indications of sudden changes in the average speed of vehicles passing the selected sensor. We also conclude that traditional ML metrics of RMSE and r2 could be augmented with domain specific measures.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)