Optimisation Of Ionospheric Scintillation Model Used In Radio Occultation

Detta är en Master-uppsats från Blekinge Tekniska Högskola/Institutionen för tillämpad signalbehandling

Sammanfattning: This thesis is executed in cooperation with RUAG Space AB, which specializes in highly reliable on-board satellite equipment. The thesis focuses on the effect, which disturbs the amplitude and phase of a Global Positioning System (GPS) signal, called scintillation effect. It has a substantial impact on a GPS signal, during Radio Occultation (RO). RO is a method of analysis of a refracted signal which passes through the atmosphere. RO can be used for measuring climate change and for weather forecasting. By retrieving the bending angle of a GPS signal, three basic parameters of the Earth’s atmosphere can be obtained at different heights: temperature, pressure and humidity. As the scintillation effect causes prominent errors in the bending angle calculations, it is crucial to provide possibly the most precise mathematical model, which allows to conceive proper ionospheric corrections. In this thesis, the model using Rytov approach is implemented and optimised with different optimisation functions. It is shown that the scintillation model can be optimized, which may contribute to a more accurate retrieval of the atmospheric profiles.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)