Real-time Classification of Multi-sensor Signals with Subtle Disturbances Using Machine Learning : A threaded fastening assembly case study

Detta är en Master-uppsats från KTH/Skolan för elektroteknik och datavetenskap (EECS)

Sammanfattning: Sensor fault detection is an actively researched area and there are a plethora of studies on sensor fault detection in various applications such as nuclear power plants, wireless sensor networks, weather stations and nuclear fusion. However, there does not seem to be any study focusing on detecting sensor faults in the threaded fastening assembly application. Since the threaded fastening tools use torque and angle measurements to determine whether or not a screw or bolt has been fastened properly, faulty measurements from these sensors can have dire consequences. This study aims to investigate the use of machine learning to detect a subtle kind of sensor faults, common in this application, that are difficult to detect using canonical model-based approaches. Because of the subtle and infrequent nature of these faults, a two-stage system was designed. The first component of this system is given sensor data from a tightening and then tries to classify each data point in the sensor data as normal or faulty using a combination of low-pass filtering to generate residuals and a support vector machine to classify the residual points. The second component uses the output from the first one to determine if the complete tightening is normal or faulty. Despite the modest performance of the first component, with the best model having an F1-score of 0.421 for classifying data points, the design showed promising performance for classifying the tightening signals, with the best model having an F1-score of 0.976. These results indicate that there indeed exist patterns in these kinds of torque and angle multi-sensor signals that make machine learning a feasible approach to classify them and detect sensor faults. 

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)