Discover patterns within train log data using unsupervised learning and network analysis

Detta är en Master-uppsats från KTH/Skolan för elektroteknik och datavetenskap (EECS)

Sammanfattning: With the development of information technology in recent years, log analysis has gradually become a hot research topic. However, manual log analysis requires specialized knowledge and is a time-consuming task. Therefore, more and more researchers are searching for ways to automate log analysis. In this project, we explore methods for train log analysis using natural language processing and unsupervised machine learning. Multiple language models are used in this project to extract word embeddings, one of which is the traditional language model TF-IDF, and the other three are the very popular transformer-based model, BERT, and its variants, the DistilBERT and the RoBERTa. In addition, we also compare two unsupervised clustering algorithms, the DBSCAN and the Mini-Batch k-means. The silhouette coefficient and Davies-Bouldin score are utilized for evaluating the clustering performance. Moreover, the metadata of the train logs is used to verify the effectiveness of the unsupervised methods. Apart from unsupervised learning, network analysis is applied to the train log data in order to explore the connections between the patterns, which are identified by train control system experts. Network visualization and centrality analysis are investigated to analyze the relationship and, in terms of graph theory, importance of the patterns. In general, this project provides a feasible direction to conduct log analysis and processing in the future.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)