Life Cycle Assessment of a surface radar system : A case study at Saab Electronic Defence Systems

Detta är en Master-uppsats från Linköpings universitet/Industriell miljöteknik

Sammanfattning: This master thesis was performed with the main purpose of evaluating the environmental performance of a surface radar system with the means of a life cycle assessment, LCA. Saab Electronic Defence Systems, EDS, was the initiator and driver of the project, and is also owner of the radar system evaluated. Apart from the environmental performance the project was carried out with the intention of EDS wanting to gain knowledge about working with LCA, both in terms of methodology and to get an insight into whether and how well they can work with the tool in their current situation. In order to assess the radar systems environmental impact through its entire life cycle there was emphasis on the use phase since the object can be used in several different ways under various circumstances. Eight different operational profiles were thus addressed in order to compare these variations in use scenarios. In addition, studies were performed on whether there exist any guidelines on how use phase scenarios can or should be defined when conducting an LCA. The LCA was performed in accordance with the ISO 14040 family and the database Ecoinvent has been used for mapping the in- and outflows. To calculate the potential environmental impacts ReCiPé was used, where three out of 18 impact categories were chosen to focus upon in agreement with EDS, namely climate change, fossil depletion and mineral resource depletion. Apart from within some business areas, conclusion could be drawn that no general guidelines exist for the definition of the use phase in an LCA. Besides being described in order to increase transparency in the assessment, no further requirements are set by ISO. Found through the assessment is that the use phase shows a major contribution to the overall environmental impacts from the entire life cycle, by being accountable for roughly 85 %. Depending on impact category, the cause lies with either the radar operation due to its large amount of diesel consumption or with the extraction of materials needed to provide for the replacement of faulty components during maintenance. In accordance with their share of the object’s weight, aluminium, copper and iron stand for about 77 % of the materials environmental impact. Noticeable is though that gold takes place on the top ten list of contributing materials with its 0.0001 % of the total weight, meaning that not only do the large amounts of a material matter, more important is the relation between weight and environmental impact. Regarding the eight operational profiles, out of the two parameters compared the radar operation proved to have significantly larger impacts in all three impact categories than the vehicle operation. Interestingly enough, it was found that if the radar and vehicle would have the same amount of operating hours, the vehicle would have larger impacts than the radar. In conclusion, from an environmental perspective it is more important to keep the vehicle operating hours low. However, since the radar operating hours are high at this point it would make a significant difference in reducing the radar fuel consumption. Lastly, for EDS to be able to continue in working with LCA, conclusions are drawn that a more qualified information base needs to be built up within the organization to avoid as much assumptions as possible, this in order to achieve more reliable results.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)