Characterization of surface defects caused by ultrasonic cleaning of aluminium

Detta är en Uppsats för yrkesexamina på avancerad nivå från Uppsala universitet/Tillämpad materialvetenskap

Sammanfattning: This master thesis studies the behaviour of two aluminium alloys in ultrasonic cleaning at two different intensities, as well as the effect of a cleaning solution, Formula 815 GD-NF on the same surface have been studied with respect to surface roughness and material composition. Methods like Light Optical Microscopy (LOM), Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS) and 3D topography using white light interferometry (VSI) was used to study the surface and material composition. It was found that both the ultrasonic cleaning, as well as the solution itself both increase surface roughness of the samples. When crossing a threshold in ultrasonic intensity micro jet cavitation dislodge precipitates, or areas weakened by precipitate to form a large pit. And the following heat from the jet causes the surface to oxidise, becoming more brittle, and be broken up by other cavitation phenomena to cause rapid acceleration of surface roughness in an area originating from the pit. 

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)