Spiral Groove Bearing Multiphysics Modeling

Detta är en Master-uppsats från Luleå tekniska universitet/Institutionen för teknikvetenskap och matematik

Författare: Mohamed Yousri Abdelmeguid Mohamed; [2019]

Nyckelord: ;

Sammanfattning: Cone crushers are widely used in the mining, mineral processing and quarrying segments of the industry to crush ores and large rocks. In such machinery, the load to be carried is rather heavy and the motion is gyratory which creates a need for a bearing set that can withstand such severe conditions. Sandvik AB is a high-technology Swedish engineering group specialized in tools and tooling systems for metal cutting, equipment, as well as tools and services for the mining and construction industries. One of their products relevant to the mining industry is the cone crusher which utilizes a 3-piece bearing set to carry thrust load. This bearing can be classified as a Spiral Groove Bearing \footnote{The abbreviation S.G.B will be used interchangeably throughout the thesis.}, and it has been incurred that it wears out rather quickly and is believed to be running under mixed-lubrication conditions where the interfaces in the bearing-set are not fully lubricated. The aim behind this thesis is to create a multiphysics model of this bearing in order to understand deeply how it works and the reasons why it does not perform as expected as well as to predict design improvements which can improve the performance of the bearing-set, thus increasing its operating life. It has been concluded that the bearing operates under severe mixed-lubrication conditions and that the generation of a squeeze film is the only method by which lubrication takes place due to the excessive depth of the grooves which is needed to allow for an adequate amount of cold oil to flow into the grooves and cool the interface as well as to accommodate for a considerable amount of wear particles. In light of the results and insight gathered from the simulations, possible design variations of the bearing which can be advantageous in terms of mitigating asperity friction in the interfaces of the bearing are discussed and tested.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)