A study of naturally occurring radon in Swedish water purification plants.

Detta är en Master-uppsats från KTH/Mark- och vattenteknik

Sammanfattning: Radon dissolved in drinking-water can be transferred into the indoor air and is one of the main transfer pathways for radon. At water purification plants, large quantities of water are treated and there is a risk that radon degasses from the water and enters into the indoor air. Hence, there is a risk for elevated radon levels in the indoor air at these facilities. This study aims to investigate the general impact of water treatment processes on the radon concentration in water and its transfer into the indoor air. Moreover, the risk that radon exposure exceeds the regulatory limits at workplaces was investigated. In total, the results from 39 Swedish water purification plants are included in the study. The methodology includes long-term air measurements with alpha track detectors, and short-term air measurements with AlphaGUARDs. In addition, water samples were collected in order to analyze the radon concentration in the untreated and treated water. The results show that several plants experience elevated radon levels in the indoor air and in some cases the exposure could be problematic. Several connections were investigated without finding apparent connections for those cases. For example, the relation between radon concentration in the water and radon level in the indoor air was investigated and the connection between the volume of water treated and the radon level in the indoor air. Calculations with transfer coefficients indicate that the transfer of radon into the indoor air is relatively small. However, there can also be contribution from other radon transfer pathways, such as soil and buildings, which may have an impact on the radon levels in the indoor air.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)