Decentralized Secondary Frequency Control in an Optimized Diesel PV Hybrid System

Detta är en Master-uppsats från KTH/Skolan för elektroteknik och datavetenskap (EECS)

Sammanfattning: This research argues that a diesel-based isolated electrical system can be optimized byintegrating a high share of solar photovoltaic (PV) generation and that the frequencystability of such system can be improved by including the PV participation in frequencyregulation. A case study is developed in order to explore an island’s expansion of theinstalled generating capacity and its optimization. This study uses the tool HOMER tosolve the optimization problem and PowerFactory to verify the frequency stability of theproposed system. The PV integration allows for a reduction of diesel fuel consumption,emissions and generation costs. Additionally, in high PV penetration scenarios, the reducedinertia in such systems can lead to high frequency deviations that may trip the systemprotection. The study demonstrates that the instantaneous frequency deviation after a loadand generation imbalance can be reduced by designing the PVs to operate with an allocatedreserve and a decentralized time-based secondary frequency control. The frequency stabilitywas achieved after different disturbance scenarios under high PV penetration and reducedavailable inertia, indicating that high PV integration is economically and technically feasiblein small island grids.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)