An Automated Process for Concrete Reinforcement Layout Design

Detta är en Master-uppsats från KTH/Bro- och stålbyggnad

Sammanfattning: As many tasks considering structural design in civil engineering become digitalised, the possibility of creating a more effective workflow increases. The development of computer programs that can handle large amounts of data and assist the decision making during design process increases the requirement of the data management to fully utilize the potential of a digital workflow. The design of reinforcement layout of concrete structures is time demanding and often performed manually. These characteristics of a workflow indicates that it may be suitable to be subject to automation. The aim of this thesis is to highlight the potential and the difficulties of using automated design procedures in civil engineering with focus on reinforcement layout design. Specifically, the selection of straight rebars and their placement within concrete structures has been studied with respect to buildability and the amount of reinforcement used. A computer program has been developed to select rebar diameters and arrangement, satisfying the required amount of reinforcement as well as some of the rules according to the Eurocode standard. In order to find feasible solutions, an optimization of the amount of reinforcement as well as different measures of buildability is performed, using a genetic algorithm. The result from two case studies showed that the program managed to perform tasks similar to an engineer and create design solutions which reduced the amount of reinforcement and the number of rebar types. Furthermore, it was shown that consideration to the identified buildability parameters played an important role in finding an optimal solution. The findings indicate that the design of reinforcement layout may be automated and that a more effective workflow can be achieved.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)