Transport Aircraft Conceptual Design

Detta är en Kandidat-uppsats från KTH/Skolan för teknikvetenskap (SCI)

Författare: Albin Karlsson; Anton Lomaeus; [2017]

Nyckelord: ;

Sammanfattning: A conceptual design for a transport aircraft has been created, tailored for human-itarian missions along the equator with its home base in the European Union while optimizing for fuel eciency and speed. An initial estimate of the empty weight was made using historical data and Breguet equations, based on a required payload of 60 tonnes and range of 5 500 nautical miles. A constraint diagram consisting of require-ments for stall speed, takeo distance, climb rate and landing distance was used to determine wing loading and thrust to weight ratio, resulting in a main wing area of 387m 2 and thrust to weight ratio of 0:224, for which two Rolls Royce Trent 1000-H engines were selected. A high aspect ratio wing was designed with blended winglets to optimize against lift induced drag. Wing placement and tail volume were decided by iterative calculations, resulting in a centre of lift located aft of the centre of gravity during all stages of the mission. The resulting aircraft model has a high wing with a span of 62 m, length of 49m with a takeo gross weight of 221 tonnes, of which 83 tonnes are fuel.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)