Development of an integrated tool to design, estimate cost and calculate annual performances of a solar power tower

Detta är en Master-uppsats från KTH/Kraft- och värmeteknologi

Sammanfattning: This Master Thesis consisted in realizing a tool able to design, estimate the cost and calculate annual yields of a molten salt solar power tower. Such tool was made for a company providing CSP equipment and plant solutions for engineering, engineering and procurement or also EPC of a solar power tower. The Company wishes to propose competitive plant configurations presenting a good trade-off between cost and revenues. The Company can oversee the EPC of a whole power plant or/and supply some components of the molten salt cycle and of the water/steam cycle. The tool models a large scale solar power tower with a thermal energy storage system on EBSILON®Professional 12.04, a thermodynamic software.   When launching a simulation, the tool sizes the components of the molten salt cycle (design phase) according to user’s inputs, the other components have their characteristics based on a reference project. Depending on the size of the components, the total cost is determined and the revenues over a year of operation are calculated (annual performance). When performing several simulations with different configurations, the Company can judge about the economic viability of plant configurations by comparing their LCOEs and NPVs.   The present document describes the result of the Master Thesis, that is to say the tool itself, what it contains and how it works. The methodology adopted to design the components is presented in depth, the way costs were calculated is exposed. The document explains the annual performance calculations and the simple operation strategy implemented. Finally, a technical and cost validation was carried out but it would require some further work to be complete. The design and cost calculations are performed in few seconds, the annual calculations take around 2-3h.   One main contribution of the Master Thesis is to show that designing, estimating costs and calculating annual performances is feasible in a single tool operating at a high level of detail. Using the tool during a solar power tower project could considerably facilitate the current process in place at the Company. It can also allow to compare an important number of configurations to determine a good techno-economic solution.  

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)