Developing Robot assisted Plastic 3D Printing Platform

Detta är en Master-uppsats från KTH/Skolan för industriell teknik och management (ITM)

Sammanfattning: This project was initiated by Dr. Sasan Dadbaksh upon listening to the requirements I presented for my master thesis. My requirements were to do a master thesis project in the field of additive manufacturing specifically fused deposition modeling that should not only involve the research work but should also present an opportunity to develop hardware and should involve experimental testing. Then Sasan came up with the idea of developing a system capable to perform 3D printing with the extruder fixed in one position and the motion required for 3D printing will be provided by the robotic arm. The title of developing green build strategies for robot assisted plastic 3D printing came into being. The main concept behind the title of developing robot assisted plastic 3D printing platform is to develop such a system that can offer additive manufacturing services, specifically of fused deposition modeling 3D printing, as an inbound process during the manufacturing of any part through subtractive processes with the help of a robotic arm along with the repair of any kind of parts with the assistance of fused deposition modeling 3D printing. The main objectives of the master thesis include building a stationary filament extrusion module to interact with a robot hand and establishing a strategy for a robot hand to move the part to appropriate locations to complete building a part on a preform without support structures. The targets that were achieved with the completion of this thesis project includes the development of the complete hardware that consists of a mechanical structure with the option of mounting the components required to run the extrusion setup, learning the basic working of the software that are able to simulate the 3D printing process with the robotic arm (Robot Studio and Robo DK), creation of the simulation of the whole process, achieving communication between the robotic arm and the microcontroller of the extruder and finally the printing of a simple part for the demonstration. The components needed to be installed on the structure includes the motor, extruder, hot end, nozzle, filament. The structure also accumulated the required electronics that includes power supply, microcontroller, and an LCD to monitor the extrusion parameters. The developed machine runs on the state-of-the-art components that belong to the few of the best manufacturers of the technology.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)