Real-time hand segmentation using deep learning

Detta är en Master-uppsats från KTH/Skolan för elektroteknik och datavetenskap (EECS)

Sammanfattning: Hand segmentation is a fundamental part of many computer vision systems aimed at gesture recognition or hand tracking. In particular, augmented reality solutions need a very accurate gesture analysis system in order to satisfy the end consumers in an appropriate manner. Therefore the hand segmentation step is critical. Segmentation is a well-known problem in image processing, being the process to divide a digital image into multiple regions with pixels of similar qualities. Classify what pixels belong to the hand and which ones belong to the background need to be performed within a real-time performance and a reasonable computational complexity. While in the past mainly light-weight probabilistic and machine learning approaches were used, this work investigates the challenges of real-time hand segmentation achieved through several deep learning techniques. Is it possible or not to improve current state-of-theart segmentation systems for smartphone applications? Several models are tested and compared based on accuracy and processing speed. Transfer learning-like approach leads the method of this work since many architectures were built just for generic semantic segmentation or for particular applications such as autonomous driving. Great effort is spent on organizing a solid and generalized dataset of hands, exploiting the existing ones and data collected by ManoMotion AB. Since the first aim was to obtain a really accurate hand segmentation, in the end, RefineNet architecture is selected and both quantitative and qualitative evaluations are performed, considering its advantages and analysing the problems related to the computational time which could be improved in the future. 

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)