The Effect of Electromagnetic Stirring and Flow Control Devices on Eight-Strand Tundish Performance

Detta är en Master-uppsats från KTH/Materialens processteknologi

Sammanfattning: The strand similarity and inclusion removal capability are two critical parameters to measure the performance of multi-strand tundish in clean steel production. In this work, the effect of two flow regulators, i.e., Flow Control Devices (FCD) and Electromagnetic Stirring (EMS) on eight-strand tundish performance have been investigated by establishing a water model and conducting numerical simulations of water model. The water model was focused on revealing the effect of stirring while the simulation was employed to investigate the effect of two FCDs, namely baffle wall and turbo-stopper. The analysis of strand similarity and inclusion removal were conducted by analyzing flow characteristics derived from Combined Model of Residence Time Distribution (RTD) curve and observing the flow movement in the tundish model. In addition, the tundish capability to remove inclusions was also studied by injecting inclusion particles using Discrete Phase Model (DPM) in ANSYS Fluent. Experiment results cause the Combined Model needs to be modified. This modification was employed when analyzing tundish configuration involving stirring. By using the modified Combined Model, the stirring can significantly increase the well-mix volume to almost 100% as it annihilates dead zone. The stirring also increases the similarity between strands and makes the RTD curve more similar to ideal mixing curve.  However, the problem of short-circuiting flow need to be solved and care should be taken into consideration regarding the selection of stirring direction as well as bath surface condition when implementing EMS in reality. The simulation results show that the addition of baffle wall and turbo-stopper are beneficial to improve mixing as well as to avoid the short-circuiting flow. Furthermore, compared to individual FCD, the combination of baffle wall and turbo-stopper results in the best performance to remove inclusions by providing surface-directed flow and generating a higher plug flow.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)