Bränslecellsystem för strömförsörjningsbehov i Försvarsmakten

Detta är en Uppsats för yrkesexamina på avancerad nivå från Uppsala universitet/Institutionen för materialkemi

Sammanfattning:

Försvarets Materielverk (FMV) driver sedan 2003 ett bränslecellsprogram med syfte att öka Försvarsmaktens kunskap om bränslecellstekniken (FC-tekniken) och dess potential för framtida applikationer. Arbetet genomförs inom ramen för FM´s ”Dual Use”-program vars mål är att kartlägga potentiella strategiska teknologier för både civila och militära ändamål.

En av slutsatserna som FMV drar är att bränsleceller inte nödvändigtvis är det självklara valet för alla studerade applikationer, men att tekniken visar på fördelar som strömförsörjningsfunktion för vissa tillämpningar. FC-tekniken har inneboende egenskaper vilka några innebär fördelar för såväl civila som militära tillämpningar. Särskilda fördelar relevant för militär verksamhet är att de har en låg ljudnivå och hög bränsledensitet vilket innebär potentiellt lägre upptäcktsrisk jämfört med förbränningssystem och betydligt längre drifttid jämfört med motsvarade vikt batterier. Vidare kan de konstrueras att vara bränsleflexibla och utformas för allt ifrån ren vätgas till diesel med hög svavelhalt.

Frågan är nu vilka tillämpningar inom FM som faktiskt kan dra nytta av ett strömförsörjningssystem som möjliggör längre drifttid än batterier och samtidigt är tystare än en förbränningsmotor.

Syftet med arbetet är att identifiera dessa tillämpningar inom FM där FC-teknikens inneboende egenskaper kan göra den till ett intressant strömförsörjningsalternativ samt precisera hur dessa system kan specificeras. Detta görs genom att svara på följande frågor:

  • För vilka typer av tillämpningar inom FM har FC-tekniken konkurrensfördel?
  • Hur skall specifikationerna för dessa bränslecellsystem formuleras?

Uppgiften har lösts dels genom litteraturstudier av resultat och slutsatser av redan genomförda studier och dels genom att intervjua nyckelpersoner i relevanta positioner för de tänkta strömförsörjningssystemen.

De tillämpningar som studeras och potentiellt kan ha konkurrensfördel gentemot förbränningssystem och/eller elektrokemisk lagring som t.ex. batterier är strömförsörjning av mobil och portabel utrustning, strömförsörjning av obemannade system, reservkraft, kombinerad kraft- och värmeproduktion (CHP) samt strömförsörjning av avlägsna enheter, dvs. enheter som inte har möjlighet att vara uppkopplade mot det ordinarie elnätet.

Genom en utvärderingsprocess valdes två av dessa tillämpningar ut vilka ansågs vara speciellt intressanta att studera i mer detalj; ett mindre batteriladdningssystem på gruppnivå samt ett strömförsörjningssystem för en undervattensfarkost (AUV).

Batteriladdningssystemet är avsett för förband som enskilt skall kunna lösa uppgifter i upp till tre veckor utan möjlighet till externt underhåll. Förband som har dessa uppgifter är specialförbanden, arméns jägarbataljon, underrättelsebataljonen samt amfibiekårens kustjägarkompani. Givet en generisk användargrupp, som anses kunna representera samtliga förband, kunde det maximala laddeffektbehovet uppskattas till drygt 80 W vid maximalt rekommenderad laddström. Om en längre laddtid kan accepteras kan dock effektbehovet minskas och likaså batteriladdningssystemets vikt och volym. Batteriladdningssystemet skall kunna hantera en rad olika typer och storlekar av batterier vilket ställer krav på både lämpliga fysiska gränsytor samt en funktion för ”smart laddning”, dvs. att systemet autonomt kan kontrollera hur det aktuella batteriet skall laddas. Då batteriladdningssystemet är avsett att användas i fältmiljö både nationellt och internationellt finns krav på funktion både i låga och höga temperaturer samt okänslighet mot både väta och sand. De kommersiellt idag tillgängliga systemen som potentiellt uppfyller kraven har en systemvikt på ca 12 kg.

För den studerade AUV-applikationen gjordes beräkningar för tre olika strömförsörjningsfall; 1) Enbart batterier 2) Enbart ett bränslecellsystem och 3) Ett bränslecellsystem som hanterar baslasten och ett batteripack som hanterar topplasten.

Av resultatet att döma finns i den studerade AUV-applikationen, med aktuell driftprofil, möjligen ett behov av hybridisering då denna lösning medför en 20 procentig ökning i drifttid. Mot detta skall ställas den ökade komplexiteten och kostnaden som detta kan medföra. Detta kan härledas till det faktum att topplasten inte skiljer sig markant mot baslasten samt att topplasten utnyttjas under mer än hälften av den totala drifttiden. I ett sådant fall verkar batteriets potentiellt högre förmåga att leverera hög effekt snabbt överskuggas av dess lägre energidensitet jämfört med bränslet. I kravet finns behov av att systemet under kort tid, < 1 min, skall kunna leverera cirka 10 kW då farkosten ”simmar” ut ur torpedtuben. Detta innebär givetvis att någon form av hybridisering är nödvändig. Exempelvis skulle en lösning kunna medge ett uttag av denna effekt under kort tid och som sedan under transitperioden har förmåga att ladda upp batteriet innan detta skall användas under den tid farkosten är fullt operativ. För att klargöra hur en sådan lösning kan utformas behövs detta krav analyseras mer i detalj.

Eftersom effektbehovet i driftprofilen ökar relativt lite mellan bas- och topplast (1020 – 1290; +26 %) kommer skillnaden i massa och volym mellan två bränslecellsystem motsvarande bas- och topplast vara relativt liten. Ett något större system som kan hantera både bas- och topplast borde således inte medföra varken en betydligt större massa eller volym. Bränslecellsteknikens generellt höga verkningsgrad vid dellast medför också en hög verkningsgrad vid båda lastfallen. En fortsatt analys av denna lösning bör inriktas på att studera frågor som rör vilken typ av lagring som är lämplig för behovet av ett kortvarigt effektuttag, om denna lösning enbart skall hantera detta effektuttag eller om en större hybridisering av den typ som presenteras i Fall 3 är intressant.

Utöver dessa resultat har tekniska specifikationer skrivits för respektive applikation. Dessa återfinns som bilagor.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)