Use of Satellite Data for Prediction of Weather Impact on EO-Systems

Detta är en Master-uppsats från Linköpings universitet/Institutionen för fysik, kemi och biologi

Sammanfattning: To predict the performance of an electro-optical sensor system (EO-system) requires taking the weather situation into consideration. The possibility to use weather data from satellites instead of ground – and flight stations has been investigated. Nearly 170 satellites (about 10% of the functional satellites in orbit) were found to have atmosphere and weather monitoring. A method to select satellite data has been created based on three criteria: (1) the satellite should have a least one payload that measure a weather parameter for EO-system, (2) it should be possible to download data, free of charge, from the specified payload and (3) the satellite should cover geographical areas of interest for a potential user. The investigated performance property is the range, which is affected by many weather parameters, and focus has been on aerosols. The mean value for the aerosol extinction coefficient, for day- and nighttime conditions in December 2016, from the satellite CALIPSO’s lidar instrument Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) has been downloaded from and implemented in a new developed application to predict the range for an EO-system. In the satellite data, from December 2016, it could be seen that the presence of aerosols, on a global scale, appears below 5 km and that the concentration of aerosols for nighttime condition is higher in local areas. For the test wavelength band of 0.9–2.5 µm, the application showed that the aerosol impact reduced the range by nearly 87%, if the EO-system was in a layer with aerosols. The application for the range prediction of EO-systems is on an early stage and need further development, especially its weather and scene parameters, to become a successful tool for a potential user in the future.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)