Loss Given Default Estimation with Machine Learning Ensemble Methods

Detta är en Master-uppsats från KTH/Matematisk statistik

Sammanfattning: This thesis evaluates the performance of three machine learning methods in prediction of the Loss Given Default (LGD). LGD can be seen as the opposite of the recovery rate, i.e. the ratio of an outstanding loan that the loan issuer would not be able to recover in case the customer would default. The methods investigated are decision trees, random forest and boosted methods. All of the methods investigated performed well in predicting the cases were the loan is not recovered, LGD = 1 (100%), or the loan is totally recovered, LGD = 0 (0% ). When the performance of the models was evaluated on a dataset where the observations with LGD = 1 were removed, a significant decrease in performance was observed. The random forest model built on an unbalanced training dataset showed better performance on the test dataset that included values LGD = 1 and the random forest model built on a balanced training dataset performed better on the test set where the observations of LGD = 1 were removed. Boosted models evaluated in this study showed less accurate predictions than other methods used. Overall, the performance of random forest models showed slightly better results than the performance of decision tree models, although the computational time (the cost) was considerably longer when running the random forest models. Therefore decision tree models would be suggested for prediction of the Loss Given Default.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)