Abaca in the Philippines, an overview of a potential important resource for the country : Relating the tensile strength of the single fiber to the microfibrilar angle

Detta är en Kandidat-uppsats från KTH/Skolan för kemi, bioteknologi och hälsa (CBH)

Sammanfattning: Due to environmental concerns and to the limited amount of fossil fuel in the world theinterest in using renewable material has been and will continue to be on the rise. With theincreasing demand for renewable materials such as bio-based fibers, the research aroundnatural fibers is intensifying. Abaca (Musa Texitilis Nee) is a plant endemic to the Philippineswhich is claimed to contain the strongest natural fiber in the world 1. However, no thoroughresearch on performing tensile strength test on single abaca fibers/cells has been found. Byperforming tensile strength test on the single abaca fibers and relate this will provide freshdata about the single abaca fiber strength that can be compared with other natural fibers.This can later be a reference tool in order to find the optimal fiber for the product to be made. The purpose of this study is to develop a methodology for performing tensile strength testson single abaca fibers with the major objective to relate the tensile strength and E-modulusof the fibers with their microfibrillar angle (MFA). The research was done by using Abaca(grade S2) from Camarines Sur (Philippines) that was chemically disintegrated in order toobtain single fibers. The single fibers were mounted to a custom made paper frame for thetensile strength test performed by an Instron 5944. The MFA of each fiber was also retrievedusing an optical microscope with a polarized filter. The research showed an indication of aninversely proportional relation between MFA and tensile strength of the fibers. According tothe results, the E-modulus of the single abaca fiber was almost constant, independently onthe MFA of the fiber.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)