Modeling and Control of Friction Stir Welding in 5 cm thick Copper Canisters

Detta är en Master-uppsats från Reglerteknik; Tekniska högskolan

Sammanfattning: Friction stir welding has become a popular forging technique used in many applications. The Swedish Nuclear Fuel and Waste Management Company (SKB) evaluates this method to seal the 5 cm thick copper canisters that will contain the spent nuclear fuel. To produce repetitive, high quality welds, the process must be controlled, and today a cascade controller is used to keep the desired stir zone temperature. In this thesis, the control system is extended to also include a plunge depth controller. Two different approaches are evaluated; the first attempt is a decentralized solution where the cascaded temperature controller is kept, and the second approach uses a non-linear model predictive controller for both depth and temperature. Suitable models have been derived and used to design the controllers; a simpler model for the decentralized control and a more extensive, full model used in the non-linear model predictive controller that relates all the important process variables. The two controller designs are compared according to important performance measures, and the achieved increase in performance with the more complex non-linear model predictive controller is evaluated. The non-linear model predictive controller has not been implemented on the real process. Hence, simulations of the closed loop systems using the full model have been used to compare and evaluate the control strategies. The decentralized controller has been implemented on the real system. Two welds have been made using plunge depth control with excellent experimental results, confirming that the decentralized controller design proposed in this thesis can be successfully used. Even though the controller manages to regulate the plunge depth with satisfying performance, simulations indicate that the non-linear model predictive controller achieves even better closed loop performance. This controller manages to compensate for the cross-connections between the process variables, and the resulting closed loop system is almost decoupled. Further research will reveal which control design that will finally be used.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)