Improving Discriminative Correlation Filters for Visual Tracking

Detta är en Master-uppsats från Linköpings universitet/Datorseende

Författare: Gustav Häger; [2015]

Nyckelord: Tracking; Computer vision;

Sammanfattning: Generic visual tracking is one of the classical problems in computer vision. In this problem, no prior knowledge of the target is available aside from a bounding box in the initial frame of the sequence. The generic visual tracking is a difficult task due to a number of factors such as momentary occlusions, target rotations, changes in target illumination and variations in the target size. In recent years, discriminative correlation filter (DCF) based trackers have shown promising results for visual tracking. These DCF based methods use the Fourier transform to efficiently calculate detection and model updates, allowing significantly higher frame rates than competing methods. However, existing DCF based methods only estimate translation of the object while ignoring changes in size.This thesis investigates the problem of accurately estimating the scale variations within a DCF based framework. A novel scale estimation method is proposed by explicitly constructing translation and scale filters. The proposed scale estimation technique is robust and significantly improve the tracking performance, while operating at real-time. In addition, a comprehensive evaluation of feature representations in a DCF framework is performed. Experiments are performed on the benchmark OTB-2015 dataset, as well as the VOT 2014 dataset. The proposed methods are shown to significantly improve the performance of existing DCF based trackers.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)