Reinforced Concrete Subjected To Restraint Forces : A comparison with non-linear numerical analyses

Detta är en Master-uppsats från KTH/Bro- och stålbyggnad

Sammanfattning: In Sweden, it is Eurocode 2 which forms the basis for performing a design of concrete structures, in which methods can be found treating the subject of restrained concrete members and cracking in the serviceability limit state. In the code, both detailed hand calculations procedures as well as simplified methods are described. Several proposal of how to treat base restrained structures can be found in other codes and reports. Some state that the procedure given in Eurocode 2 is on the unsafe side as the method relies on stabilized cracking, while some say that the method is over conservative as the restraining actions will prevent the cracks from opening. As these methods are analysed closer and further tested, it is obtained that they all yield different results under the same assumptions. Most of them are within a similar span, and the deviation arises as the various methods takes different aspect into consideration. One method yields a result which is considerably higher than all other, denoted the Chalmers method. As this method is taught at the technical institute of Gothenburg (Chalmers), the large deviation have caused some confusion among Swedish engineers. As the methods are compared to numerical analyses, it is found that the detailed calculation procedure stated in Eurocode 2 yields fairly good prediction of crack widths for lower levels of strain, while for high levels of strain it is over conservative. The Chalmers method seems to underestimate the number of cracks which occur, and thus give rise to the deviating results. It is further found that in relation to more detailed hand calculations, the simplified procedure stated in Eurocode 2 may not always be on the safe side. The procedure is only valid within a certain range which may be exceeded depending on the magnitude of the load and choice of various design parameters. The effect creep have on base restrained structures subjected to long term loads such as shrinkage is further discussed and analysed numerically. Various hand calculation methods suggest that creep have a positive influence on base restrained structures in the sense that the crack width become smaller. The numerical results indicates that this is indeed the case, however, uncertainties of these analyses are considered to be large in relation to the short term analyses. 

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)