Macrospin-based Modeling of Three-Terminal Spin Hall Nano Oscillators

Detta är en Master-uppsats från KTH/Skolan för elektroteknik och datavetenskap (EECS)

Sammanfattning: Spintronics is an attractive field that combines magnetism and electronics to realize new devices. Spin based oscillators (SBOs) have gained significant interest in recent years due to their attractive characteristics, including high operating frequency, low power, small area and integration compatibility with CMOS circuitry. SBOs have shown potential in the fields of wireless communication systems, magnetic field sensing and neuromorphic computing. A relatively new and promising SBO architecture is the three-terminal Spin Hall Nano Oscillator (SHNO). To accelerate the design of next generation spintronic devices, co-design and simulation of three-terminal SHNOs with CMOS technology are of great importance. To realize this, a comprehensive analytical model is needed. In this thesis, an extensive survey of SBO theory is performed and a set of compact equations are proposed to describe the SBO characteristics. From these equations a compact model is realized in Verilog-A and verified against experimental measurements. The model shows good agreement with experimental results and opens up the possibility of designing CMOS circuits for three-terminal SHNOs.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)