Characterization of Secondary Carbides in Low-Alloyed Martensitic Model Alloy Tool Steels

Detta är en Master-uppsats från KTH/Materialvetenskap

Sammanfattning: The development of tool steels for making and shaping other materials requires a better understanding of the material's properties during manufacture. These high-quality steels include many alloying elements, which give increased hardness during tempering. For producing hardened microstructures, austenite generation is essential. The martensite formed by rapid quenching of austenite followed by tempering helps develop high strength steels. Studying carbide precipitation is a challenge as they are very small in size, present only in small volume fractions and high number densities. The carbide reactions are complicated due to so-called metastable carbides, which are only present as part of the precipitation process. This work focuses on model alloys with two main elements in addition to iron and carbon, molybdenum, and vanadium, to clarify and simplify the carbide characterization. This is done to determine the effect of molybdenum and vanadium carbides on the overall hardness. In this work, two model alloys, A and B, are tempered at 550°C and 600°C with the same vanadium content but different molybdenum contents. The hardness of the materials is evaluated and compared at these temperatures. A more detailed characterization work is done for material A with Scanning Transmission Electron Microscopy-Energy Dispersive Spectroscopy (STEM-EDS) to understand the microstructure and analyze the precipitates. Simulations are performed with Thermo-Calc Prisma (TC-Prisma) to support the experimental work, which includes the simulation of the secondary carbide precipitation, mainly molybdenum carbides in material A tempered for 24h at 600°C, and predicts the carbide precipitation behavior in this steel. The results from STEM-EDS and TC-Prisma for material A, show that the small secondary carbides in the martensite contribute to the increased strength of material A. Due to the overaging of the carbides at 600°C, the hardness at 550°C is higher than at 600°C for material A. The given thesis work is an attempt to interpret the development of secondary carbides of Mo and V in the martensitic matrix and their role in the overall hardness. 

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)