Optimering Överhettarångsotning : Förstudie på Mälarenergi Block 6 för Heat managements systemlösning

Detta är en Uppsats för yrkesexamina på grundnivå från Mälardalens universitet/Akademin för ekonomi, samhälle och teknik

Sammanfattning: The EU waste hierarchy includes energy recovery facilities where waste is used as fuel in combined heat- and powerplants. When waste is incinerated can the thermal energy be used in for example, district heating networks and or electricity generation. The purpose of the degree project is to make a pre-study of Heat Management's system solution HISS, optimization of steam soot blowing at Mälarenergi's waste boiler. Waste is a heterogeneous fuel that typically contains a variety of substances such as alkali, chlorine and heavy metals that often contribute to fouling on heat transfer surfaces. These coatings reduce the efficiency of heat transferring surfaces such as superheaters. Cleaning by soot blowing using steam is done at regular intervals to maintain efficiency. Superheater cleaning on the Block 6 is done by retractable rotating soot blowers equipped with a nozzle from where steam is sprayed out at pressure of 25 bar. The blowers are inserted one at a time in a sequence, which means that they wait for the previous blower before the next one can enter. Steam is taken from the main process, which leads to reduction in load on the turbine and causes wear during the sweeping process due to the high impact force. This can lead to erosive damage and thinning of the material on the tubes, thus shortening the lifespan of the superheaters. The optimisation adjusts the soot sequence so that full steam pressure is used only in one direction of travel of the lance, this allows an overlapping soot sequence to be used and thus halves the time required for sooting. Analysis of shorter sooting time and reduced steam consumption based on production data and case studies has led to the following results. The energy consumption of the auxiliary power is reduced by 14.25 MWh per sweeping sequence and 7 115.5 MWh annually. The turbine can produce 2.51 MWh more electricity per sweeping as the time it runs at reduced load is reduced, totalling 1 254.39 MWh in one year. 24.03 tonnes of steam are saved per sweeping and 12 003 tonnes in one year. Payback time for the optimisation is 1.01 years based on an average spot price from Mälarenergi's budgeting from last year. Considering current electricity prices could the payback time be further reduced. The conclusion from the pre-study is that the optimisation as the investment is economically viable and has other positive benefits such as: steadier steam flow and reduced pressure surges. Wear and tear on superheaters are reduced as they are only sprayed with high pressure once instead of twice per sweeping sequence.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)