Study on a high precision drilling tool with focus on power source and driveline

Detta är en Master-uppsats från KTH/Maskinkonstruktion (Inst.)

Sammanfattning: This thesis was carried out at Atlas Copco Industrial Technique in Nacka, Sweden. Atlas Copco is a world leading manufacturer of industrial tools for a wide range of industries. One application is semi-automatic drilling machines for the aerospace industry. The latest trend for such tools is moving in a direction of increased control and traceability. The purpose of this thesis was to investigate the possibility of replacing the pneumatic motor in an industrial semi-automatic drilling machine, PFD1100, with an electric motor and explore the possibilities such design would enable. The two main priorities for the thesis have been:  Investigate the capacity of an electric motor developed by Atlas Copco and find out if it’s suitable for use in drilling applications.  Develop concepts for a new driveline, solving the two core functions of the drill - spindle rotation and spindle feed. The thesis has been limited to use the electric motor from an existing nutrunner and carry over the design for the spindle mechanism from the PFD1100 drilling machine. A background study was conducted of the aerospace industry in general and drilling applications in particular. The authors made a study visit to Airbus production facilities in Hamburg to get a better insight of where and how the tools are used. The background study supported the need for an electric drilling machine, targeted at smaller hole sizes and stack drilling applications. A hybrid prototype machine was designed and manufactured consisting of the driveline from the PFD1100 drilling machine and the motor and electrics from an electric nutrunner. The purpose of the prototype was to verify analytical calculations of the mechanical drilling power through physical testing, and investigate how the machines would behave with an electric motor. The prototype showed promising results with respect to drilling performance and basic adaptive drilling. The electric motor from the nutrunner was tested in a power test rig and the results were used to adapt an existing MATLAB script for estimating motor and inverter losses. With the adapted script provided by Atlas Copco, the gear ratio for the drilling machine could be optimized to minimize losses in the motor and electrical systems. Finally, concepts for a transmission between the electric motor and the spindle mechanism was generated and evaluated with a weighted Pugh’s evaluation matrix. Concepts focused on achieving a tool with minimum size and weight as well as expanding the tool functionality. The most promising concepts according to the evaluation were those that offered a compact and robust solution. To minimize resources and time to market, these concepts could offer a good starting point for continued develpoment.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)