Capturing continuous human movement on a linear network with mobile phone towers

Detta är en Master-uppsats från Umeå universitet/Institutionen för matematik och matematisk statistik

Sammanfattning: Anonymous Call Detail Records (CDR’s) from mobile phone towers provide a unique opportunity to aggregate individual location data to overall human mobility patterns. Flowminder uses this data to improve the welfare of low- and middle-income countries. The movement patterns are studied through key measurements of mobility. This thesis seeks to evaluate the estimates of key measurements obtained with mobile phone towers through simulation of continuous human movement on a linear network. Simulation is made with an agent based approach. Spatial point processes are used to distribute continuous start points of the agents on the linear network. The start point is then equipped with a mark, a path with an end point dependent on the start point. A path from the start point to the end point of an agent is modeled with a Markov Decision Process. The simulated human movement can then be captured with different types of mobile phone tower distributions realized from spatial point processes. The thesis will initially consider homogeneous Poisson and Simple Sequential Inhibition (SSI) processes on a plane and then introduce local clusters (heterogeneity) with Matérn Cluster and SSI processes. The goal of the thesis is to investigate the effects of change in mobile phone tower distribution and call frequency on the estimates of key measurements of mobility. The effects of call frequency are unclear and invite more detailed study. The results suggest that a decrease in the total number of towers generally worsens the estimates and that introducing local clusters also has a negative effect on the estimates. The presented methodology provides a flexible and new way to model continuous human movement along a linear network.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)