Effektförlustutredning : Effektförlustutredning av en mindre sodapanna tillhörande ett medelstort massabruk, en fallstudie.

Detta är en Kandidat-uppsats från Högskolan i Gävle/Energisystem och byggnadsteknik

Sammanfattning: The industrial sector in Sweden stands for 38 percent of the total energy use. Within these 38 percent the pulp and paper industry stand for about half of the energy use. Due to the extent of the energy use it is important that we do what we can to keep the energy usage as low as possible within our industries. In this bachelor thesis a case study is performed regarding a problem with a recovery boiler which belong to one of Stora Ensos pulp mills in a small town called Skutskär in Sweden. The problem with the recovery boiler is that it does not reach the temperature of the outgoing steam for which the soda boiler was designed, which causes the efficiency to suffer. The problem with the recovery boiler is not sustainable either in terms of energy use or economy. Recovery boiler 6 (RB6) as it is called is one of two recovery boilers belonging to the pulp mill. Both boilers are designed to produce high pressure steam at 56 bar and 450°C. The high-pressure steam produced goes through a back-pressure turbine where the pressure is lowered to the working pressure of the remaining factory while electricity is produced. Steam at a lower temperature results in lower enthalpy, which in turn will affect the electricity generation in the back-pressure turbine. The purpose of the study is to quantify the loss in electricity generation caused by the lack of steam temperature of RB6. As well as investigating the causes of the lack of heat transfer where the goal is to locate the problem area. A literature study was conducted regarding the efficiency of the recovery boiler, where much emphases was placed on the function of the superheater and the soot system. The superheater accounts for about 30 percent of all heat transfer in a recovery boiler and is directly crucial for reaching the final temperature of the steam. In the literature study, among other things, the design and fouling of superheater is studied to see that if affects the heater transfer. Further, the soot system effect on the heat transfer is also studied and it shows that the soot system has a greatly influence of the final heat transfer. The method used to conduct the study is primarily data analysis. The pulp mills internal analysis program WinMops is used in combined with Excel to analyze operational data. First, the magnitude of the problem was investigated by calculating the effect of RB6’s lack of steam temperature on the total enthalpy of the steam reaching the turbine. Calculations were made for electricity generation in normal cases and under the influence of RB6, where the difference was considered as lost electricity generation. Once the size of the problem was determined, the investigation of causes of heat transfer began, with the superheater coming into focus. The results of the case study show that RB6’s lack of steam temperature causes a loss of electricity production equivalent to 7 million SEK in a normal year and a year with a low electricity price, this amount to 3 million SEK. Whit regard to the second investigation, it is very likely that the superheater causes the temperature drop. However, the study shows that the superheater has no smaller heat transfer surface in relation to the other recovery boiler and that the heat transfer rate is also not deviant. The superheater shows a hint of fouling at the same time as the flow of soot steam is slightly lower on RB6, unlike the mill’s other recovery boiler. An interesting phenomenon that emerges in the study is that the tertiary air flow tends to have a greater effect on RB6 outgoing steam flow than expected.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)