TREATMENT OF ODOROUS VOLATILE ORGANIC COMPOUNDS USING UV/H2O2

Detta är en Master-uppsats från KTH/Energiprocesser

Författare: Manases Fuh Nguo; [2011]

Nyckelord: ;

Sammanfattning: Odorous volatile organic compounds emissions from fried-food industries posed severed pollution problems both to the workers and the surrounding inhabitants. These industries need to look for cost effective and efficient methods to reduce these emitted gases.  Several solutions such as the use of centrifugation, scrubbers, ion exchangers, biofiltration, condensation, adsorption, absorption, and incineration have been exploited to reduce these smelling gases. Centriair in collaboration with KTH aim at using UV light in combination with ozone and hydrogen peroxide to degrade these odorous VOCs emitted from the frying of meat balls (SCAN) and chips. Several volatile organic compounds which are odorants with low threshold values were identified in the emitted gases from meat frying which includes: aldehydes, sulphur containing compounds, ketones, pyrazines, and alcohols. The type and concentration of these odorants emitted depends among other things primarily on the type of oil used during the frying process.  This work focuses on the use of advanced oxidation processes to abate theses odorous gases. The effect of UV dosage and the use of hydrogen peroxide were tested in a flow reactor. Ozone producing UV lamps were used for the treatment of 2,4-decadienal, Hexanal, furfural, and 2,5-dimethylpyrazine. A simultaneous chemical and odour analysis was done using a GC/MS Olfactometry system. UV/Ozone/H2O2 was effective in reducing the volatile organic compounds tested thus reducing the odor concentration. The percent removal was proportional to the energy dosage.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)