Sentiment Analysis of Nordic Languages

Detta är en Kandidat-uppsats från Högskolan i Halmstad/Akademin för informationsteknologi; Högskolan i Halmstad/Akademin för informationsteknologi

Sammanfattning: This thesis explores the possibility of applying sentiment analysis to extract tonality of user reviews on the Nordic languages. Data processing is performed in the form of preprocessing through tokenization and padding. A model is built in a framework called Keras. Models for classification and regression were built using LSTM and GRU architectures. The results showed how the dataset influences the end result and the correlation between observed and predicted values for classification and regression. The project shows that it is possible to implement NLP in the Nordic languages and how limitations in input and performance in hardware affected the result. Some questions that arose during the project consist of methods for improving the dataset and alternative solutions for managing information related to big data and GDPR.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)