Evaluation of digital terrain models created in post processing software for UAS-data : Focused on point clouds created through block adjustment and dense image matching

Detta är en Kandidat-uppsats från Högskolan i Gävle/Samhällsbyggnad, GIS

Sammanfattning: Lately Unmanned Aerial Systems (UAS) are used more frequently in surveying. With broader use comes higher demands on the uncertainty in such measurements. The post processing software is an important factor that affects the uncertainty in the finished product. Therefore it is vital to evaluate how results differentiate in different software and how parameters contribute. In UAS-photogrammetry images are acquired with an overlap which makes it possible to generate point clouds in photogrammetric software. These point clouds are often used to create Digital Terrain Models (DTM).  The purpose of this study is to evaluate how the level of uncertainty differentiates when processing the same UAS-data through block adjustment and dense image matching in two different photogrammetric post processing software. The software used are UAS Master and Pix4D. The objective is also to investigate how the level of extraction in UAS Master and the setting for image scale in Pix4D affects the results when generating point clouds. Three terrain models were created in both software using the same set of data, changing only extraction level and image scale in UAS Master and Pix4D respectively.  26 control profiles were measured with network-RTK in the area of interest to calculate the root mean square (RMS) and mean deviation in order to verify and compare the uncertainty of the terrain models. The study shows that results vary when processing the same UAS-data in different software.  The study also shows that the extraction level in UAS Master and the image scale in Pix4D impacts the results differently. In UAS Master the uncertainty decreases with higher extraction level when generating terrain models. A clear pattern regarding the image scale setting in Pix4D cannot be determined. Both software were able to produce elevation models with a RMS-value of around 0,03 m. The mean deviation in all models created in this study were below 0,02 m, which is the requirement for class 1 in the technical specification SIS-TS 21144:2016. However the mean deviation for the ground type gravel in the terrain model created in UAS Master at a low extraction level exceeds the demands for class 1. This indicates all but one of the created models fulfil the requirements for class 1, which is the class containing the highest requirements.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)