EEG enhancement for EEG source localization in brain-machine speller

Detta är en Master-uppsats från Blekinge Tekniska Högskola/Sektionen för ingenjörsvetenskap

Sammanfattning: A Brain-Computer Interface (BCI) is a system to communicate with external world through the brain activity. The brain activity is measured by Electro-Encephalography (EEG) and then processed by a BCI system. EEG source reconstruction could be a way to improve the accuracy of EEG classification in EEGbased brain–computer interface (BCI). In this thesis BCI methods were applied on derived sources which by their EEG enhancement it became possible to obtain a more accurate EEG detection and brought a new application to BCI technology that are recognition of writing letters imagery from brain waves. The BCI system enables people to write and type letters by their brain activity (EEG). To this end, first part of the thesis is dedicated to EEG source reconstruction techniques to select the most optimal EEG channels for task classification purposes. Due to this reason the changes in EEG signal power from rest state to motor imagery task was used, to find the location of an active single equivalent dipole. Implementing an inverse problem solution on the power changes by Multiple Sparse Priors (MSP) method generated a scalp map where its fitting showed the localization of EEG electrodes. Having the optimized locations the secondary objective was to choose the most optimal EEG features and rhythm for an efficient classification. This became possible by feature ranking, 1- Nearest Neighbor leave-one-out. The feature vectors were computed by applying the combined methods of multitaper method, Pwelch. The features were classified by several methods of Normal densities based quadratic classifier (qdc), k-nearest neighbor classifier (knn), Mixture of Gaussians classification and Train neural network classifier using back-propagation. Results show that the selected features and classifiers are able to recognize the imagination of writing alphabet with the high accuracy.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)