An Evaluation of the Unity Machine Learning Agents Toolkit in Dense and Sparse Reward Video Game Environments

Detta är en Kandidat-uppsats från Uppsala universitet/Institutionen för speldesign

Sammanfattning: In computer games, one use case for artificial intelligence is used to create interesting problems for the player. To do this new techniques such as reinforcement learning allows game developers to create artificial intelligence agents with human-like or superhuman abilities. The Unity ML-agents toolkit is a plugin that provides game developers with access to reinforcement algorithms without expertise in machine learning. In this paper, we compare reinforcement learning methods and provide empirical training data from two different environments. First, we describe the chosen reinforcement methods and then explain the design of both training environments. We compared the benefits in both dense and sparse rewards environments. The reinforcement learning methods were evaluated by comparing the training speed and cumulative rewards of the agents. The goal was to evaluate how much the combination of extrinsic and intrinsic rewards accelerated the training process in the sparse rewards environment. We hope this study helps game developers utilize reinforcement learning more effectively, saving time during the training process by choosing the most fitting training method for their video game environment. The results show that when training reinforcement agents in sparse rewards environments the agents trained faster with the combination of extrinsic and intrinsic rewards. And when training an agent in a sparse reward environment with only extrinsic rewards the agent failed to learn to complete the task.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)