Sound propagation modelling with applications to wind turbines

Detta är en Master-uppsats från KTH/Mekanik

Sammanfattning: Wind power is a rapidly increasing resource of electrical power world-wide. With the increasing number of wind turbines installed one major concern is the noise they generate. Sometimes already built wind turbines have to be put down or down-regulated, when certain noise levels are exceeded, resulting in economical and environmental losses. Therefore, accurate sound propagation calculations would be beneficial already in a planning stage of a wind farm. A model that can account for varying wind speeds and complex terrains could therefore be of great importance when future wind farms are planned. In this report an extended version of the classical wave equation that allows for variations in wind speed and terrain is derived which can be used to solve complex terrain and wind settings. The equation are solved with the use of Fourier transforms and Chebyshev polynomials and a numerical code is developed. The numerical code is evaluated against test cases where analytical and simple solutions exist. Tests with no wind for both totally free propagation and with a ground surface is evaluated in both 2D and 3D settings. For these simple cases the developed code shows good agreement to analytical solutions if the computational domain is sufficiently large. More advanced test cases with wind and terrain is not evaluated in this report and needs further validation. If the sound pressure needs to be calculated for a large area, and if the frequency is high, the developed model has problems regarding computational time and memory. These problems could be solved by further development of the numerical code or by using other solution methods.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)