Convex Optimization Methods for System Identification

Detta är en Master-uppsats från Linnéuniversitetet/Institutionen för fysik och elektroteknik (IFE)

Sammanfattning: The extensive use of a least-squares problem formulation in many fields is partly motivated by the existence of an analytic solution formula which makes the theory comprehensible and readily applicable, but also easily embedded in computer-aided design or analysis tools. While the mathematics behind convex optimization has been studied for about a century, several recent researches have stimulated a new interest in the topic. Convex optimization, being a special class of mathematical optimization problems, can be considered as generalization of both least-squares and linear programming. As in the case of a linear programming problem there is in general no simple analytical formula that can be used to find the solution of a convex optimization problem. There exists however efficient methods or software implementations for solving a large class of convex problems. The challenge and the state of the art in using convex optimization comes from the difficulty in recognizing and formulating the problem. The main goal of this thesis is to investigate the potential advantages and benefits of convex optimization techniques in the field of system identification. The primary work focuses on parametric discrete-time system identification models in which we assume or choose a specific model structure and try to estimate the model parameters for best fit using experimental input-output (IO) data. By developing a working knowledge of convex optimization and treating the system identification problem as a convex optimization problem will allow us to reduce the uncertainties in the parameter estimation. This is achieved by reecting prior knowledge about the system in terms of constraint functions in the least-squares formulation.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)