Development and Assessment of Re-Fleet Assignment Model under Environmental Considerations

Detta är en Master-uppsats från KTH/Optimeringslära och systemteori

Sammanfattning: The imminent threat of global catastrophe due to climate change gets more real by each passing year. The Aviation trade association, IATA, claims that Aviation accounts for approximately 2% of the Greenhouse Gases (GHG) caused by human activities, and 3.5% of the total Radiative Forcing. With continuous increase in Aviation industry and subsequent drop in fossil fuel prices, these numbers are only expected to up with time. In Addition, these numbers do not include the effects of altitude of emission and many environmentalists believe that the number for some pollutants could be at least 2-3 times larger than IATA estimates. This rising concern engages the Aviation industry to investigate possible methods to alleviate their environmental impact.  The first part of this thesis provides a framework to support Airlines in monitoring their current environmental footprint during the process of scheduling. This objective is realised by developing a robust system for estimating the fuel consumed (ergo quantity of major Greenhouse Gases emitted) by a particular fleet type operating a certain leg, which is then employed in a Fleet Assignment (FA) Operation to reduce emissions and increase the Contribution. An emissions estimation model for Turbojet Aeroplane fleets is created for Industrial Optimizers AB’sMP2 software. The emissions estimation model uses historic fuel consumption data provided by ICAO for a given fleet type to estimate the quantity (in kg) of environmental pollutants during the Landing and Takeoff operation (below 3000 ft) and the Cruise, Climb and Descent operation (above 3000 ft).  The second part of this thesis concerns with assigning monetary weights to the pollutant estimates to calculate an emission cost. This emission cost is then added to MP2’s Fleet Assignment’s objective function as an additional Operational cost to perform a Contribution maximization optimization subjected to the legality constraints. The effects of these monetary weights levied on the results of Fleet Assignment are studied, and utilizing curve-fitting and mathematical optimization, monetary weights are estimated for the desired reduction in GHG emissions.  Finally, a recursive algorithm based on Newton-Raphson method is designed and tested for calculating pollutant weights for untested schedules.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)