Dynamic Simulation and Suspension Optimization for a Heavy Duty Railway Bogie

Detta är en Master-uppsats från KTH/Spårfordon

Sammanfattning: A multi-body simulation study was undertaken to investigate the running behavior of a rail grinder vehicle with newly developed Ganz bogies. The main purpose of the simulations was to forecast and support the vehicle acceptance tests and support the ongoing development. A multi-body model was built in Simpack and the most critical force elements were isolated and validated by tests. Derailment safety was assessed based on both European and Australian standards. The vehicle's running stability was carried out for both standard (1435mm) and broad gauge (1676mm) versions. Vehicle sway characteristics were determined through the calculation of flexibility coefficient both numerically and analytically. A parametric study for primary vertical damper was undertaken to assess the empirically selected dampers and optimize the performance. The results show that the damping coefficient can be greatly reduced while maintaining acceptable running behavior, thus the lifetime of dampers can be increased. Based on stability investigations, yaw damper installation is not necessary, though the bracketry for the possibility of later installation will remain on the prototype bogie.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)