Finite Element Analysis of PZT-based Air Flow Sensor

Detta är en Master-uppsats från Mittuniversitetet/Avdelningen för elektronikkonstruktion

Sammanfattning: This thesis proposes a novel air flow sensor based on PZT material which is used to measure air velocity in an experimental tunnel or indoor ventilation. The work focuses on designing and verifying the sensor model through finite element analysis (FEA) simulation using COMSOL Multiphysics software. This thesis is devoted to developing a sensor model with a focus on a low-velocity range up to 2 m/s and high sensitivity. The design of the sensor should be robust and reliable for different flow patterns, temperature, and atmospheric pressure variation. The sensor model consists of a fixed cylinder which connects with a bilayer cantilever made of PZT and PDMS material. The laminar flow from the sensor inlet is transformed into the turbulent flow when passing by the fixed cylinder. This structure of bilayer cantilever is designed to generate self-induced oscillation on PZT to overcome the charge leakage over the sensor impedance. Resonance optimization of the sensor structure is investigated to obtain better SNR and performance by adjusting the dimension of the cantilever. From the conducted simulation results, the relationship between the dominant frequency of output voltage generated by PZT and air velocity can be described linearly. In conclusion, it is shown that proposed sensor has a sensitivity of 0.1 m/s and a range of 0.2 to 2 m/s.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)