Classification of brain tumors in weakly annotated histopathology images with deep learning

Detta är en Master-uppsats från Linköpings universitet/Statistik och maskininlärning

Sammanfattning: Brain and nervous system tumors were responsible for around 250,000 deaths in 2020 worldwide. Correctly identifying different tumors is very important, because treatment options largely depend on the diagnosis. This is an expert task, but recently machine learning, and especially deep learning models have shown huge potential in tumor classification problems, and can provide fast and reliable support for pathologists in the decision making process. This thesis investigates classification of two brain tumors, glioblastoma multiforme and lower grade glioma in high-resolution H&E-stained histology images using deep learning. The dataset is publicly available from TCGA, and 220 whole slide images were used in this study. Ground truth labels were only available on whole slide level, but due to their large size, they could not be processed by convolutional neural networks. Therefore, patches were extracted from the whole slide images in two sizes and fed into separate networks for training. Preprocessing steps ensured that irrelevant information about the background was excluded, and that the images were stain normalized. The patch-level predictions were then combined to slide level, and the classification performance was measured on a test set. Experiments were conducted about the usefulness of pre-trained CNN models and data augmentation techniques, and the best method was selected after statistical comparisons. Following the patch-level training, five slide aggregation approaches were studied, and compared to build a whole slide classifier model. Best performance was achieved when using small patches (336 x 336 pixels), pre-trained CNN model without frozen layers, and mirroring data augmentation. The majority voting slide aggregation method resulted in the best whole slide classifier with 91.7% test accuracy and 100% sensitivity. In many comparisons, however, statistical significance could not be shown because of the relatively small size of the test set.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)