Improved Temporal Resolution Using Parallel Imaging in Radial-Cartesian 3D functional MRI

Detta är en Master-uppsats från Datorseende

Sammanfattning: MRI (Magnetic Resonance Imaging) is a medical imaging method that uses magnetic fields in order to retrieve images of the human body. This thesis revolves around a novel acquisition method of 3D fMRI (functional Magnetic Resonance Imaging) called PRESTO-CAN that uses a radial pattern in order to sample the (kx,kz)-plane of k-space (the frequency domain), and a Cartesian sample pattern in the ky-direction. The radial sample pattern allows for a denser sampling of the central parts of k-space, which contain the most basic frequency information about the structure of the recorded object. This allows for higher temporal resolution to be achieved compared with other sampling methods since a fewer amount of total samples are needed in order to retrieve enough information about how the object has changed over time. Since fMRI is mainly used for monitoring blood flow in the brain, increased temporal resolution means that we can be able to track fast changes in brain activity more efficiently.The temporal resolution can be further improved by reducing the time needed for scanning, which in turn can be achieved by applying parallel imaging. One such parallel imaging method is SENSE (SENSitivity Encoding). The scan time is reduced by decreasing the sampling density, which causes aliasing in the recorded images. The aliasing is removed by the SENSE method by utilizing the extra information provided by the fact that multiple receiver coils with differing sensitivities are used during the acquisition. By measuring the sensitivities of the respective receiver coils and solving an equation system with the aliased images, it is possible to calculate how they would have looked like without aliasing.In this master thesis, SENSE has been successfully implemented in PRESTO-CAN. By using normalized convolution in order to refine the sensitivity maps of the receiver coils, images with satisfying quality was able to be reconstructed when reducing the k-space sample rate by a factor of 2, and images of relatively good quality also when the sample rate was reduced by a factor of 4. In this way, this thesis has been able to contribute to the improvement of the temporal resolution of the PRESTO-CAN method.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)