Optimization of a two-step anaerobic treatment of wastewater from the Pulp and Paper Industry

Detta är en Master-uppsats från KTH/Industriell bioteknologi

Sammanfattning: Under de senaste 30 åren så har antalet massa- och pappersbruk minskat medan den totala produktionen av massa och papper har ökat. En högre produktion per bruk tillsammans med en hårdare miljölagstiftning, sätter ett högre tryck på vattenreningen på varje bruk. I flera massa- och pappersbruk så är vattenreningen en av faktorerna som begränsar produktionen av massa och papper. Dessutom så renas oftast restvattnet från massa- och pappersbruken med aerob rening som kräver mycket elektricitet och som producerar slam. För att minska kostnaden av vattenreningen och för att öka kapaciteten, så kan en anaerob vattenrening användas före den aeroba reningen. Fördelar med att ha en anaerob rening före den aeroba reningen är att den minskar belastningen av organiskt material på den aeroba reningen, värdefull biogas produceras, anaerob rening producerar mindre slam och kräver mindre elektricitet. Däremot så innehåller restvattnet från massa- och pappersbruk en hög halt av sulfat, vilket har orsakat en instabil biogasproduktion på flera existerande anläggningar. En potentiell lösning på detta är att använda en ytterligare anaerob reaktor före den biogasproducerande reaktorn, med syftet att reducera sulfat. Syftet med detta projekt var att optimera en anaerob två-stegs process för att få en effektiv biogasproduktion och för en stabil process. I projektet har två upp-flöde anaerob packad bädd (UAPB) reaktorer använts. Den första reaktorn var anrikad med sulfatreducerande bakterier före starten av projektet och den andra reaktorn innehöll metanogener. Processvatten från ett massa- och pappersbruk som använder barrträd som råmaterial och gör termomekanisk massa, användes i projektet. Den anaeroba två-stegs processen optimerades genom att minska retentionstiden i båda reaktorerna; genom att undersöka alternativ för att minska sulfidkoncentrationen i inflödet till biogasreaktorn; och genom att minska tillsatsen av näringsämnen till processvattnet. Stabiliteten av två-stegsprocessen mättes genom att analysera sulfat, sulfid och COD innehållet med spektrofotometri; genom att analysera pH; genom att analysera innehållet av metan i biogasen med gaskromatografi; och genom att analysera flyktiga fettsyror i utflödet med högtrycksvätskekromatografi. Resultaten visade att processen var stabil när retentionstiden för den sulfatreducerande reaktorn och biogasreaktorn var 0.3 dagar respektive 1.5 dagar. Effektiviteten av borttagningen av sulfat och COD i den sulfatreducerande reaktorn var 82% respektive 31%. Innehållet av metan i biogasen i den sulfatreducerande reaktorn var 53% i genomsnitt. I biogasreaktorn var borttagningen av COD 32% och metanhalten i biogasen var 31% i genomsnitt. Den totala borttagningen av COD för tvåstegsprocessen var 61%, när reaktorerna var kopplade via en uppsamlingsflaska. Biometanpotentialen i processvattnet och i utflödet från den sulfatreducerande reaktorn var 147 NmL CH4/g VS respektive 47 NmL CH4/g VS. Slutsatsen av projektet är att processen var stabil när retentionstiden för den sulfatreducerande reaktorn och biogasreaktorn var 0.3 dagar respektive 1.5 dagar, motiverat med stabiliteten av borttagning av sulfat och COD. Däremot var metanpotentialen för utflödet från den sulfatreducerande reaktorn bara 32% jämfört med processvattnet och nedbrytbarheten av COD var lägre i utflödet än i processvattnet. Eftersom den sulfatreducerande reaktorn var stabil vid de testade förhållandena så skulle det vara intressant att testa en enstegsprocess i en UAPB reaktorpilot i framtiden. Det skulle även vara intressant att minska retentionstiden i biogasreaktorn för att se om metanhalten i biogasen ökar.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)