Impact Damage Assessment : In collaboration with Saab aerostructures

Detta är en Kandidat-uppsats från KTH/Materialvetenskap

Författare: Julia Augustson; Madeleine Bogg; [2020]

Nyckelord: ;

Sammanfattning: This project that has been executed in collaboration with Saab aerostructures deals with how three materials, aluminum, titanium and corrosion resistant steel react when they are affected by different energy levels. These energy levels serve the purpose of representing damages that can happen in storage and handling to components used in production. A literature study was made to gather information regarding the treated materials as well as some methods that can be used to test a materials property. The goal of the project is to create a tool for Saab to use in their production in order to first estimate the energy levels that created a mark on a material and secondly evaluate if a crack can be suspected, by consequence evaluate if a NDT (non-destructive test) is required. The experiment was executed as such that all of the materials were put through drop-tests simulating different energy levels, with two different strikers, blunt and sharp, and then the materials were examined. Non-destructive testing was made on all of the marks made on the different materials using penetrant- or eddy current-method to see if there were any cracks formed in the material after impact. The experiment did not show signs of any cracks from the tested energy levels. However, it showed that crack propagation is highly dependent on the shape of the striker. To make the experiment more reliable and give a better result more energy levels would have needed to be tested. Also, a large number of different strikers and more non-destructive testing methods would have to be used.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)