Generating synthetic brain MR images using a hybrid combination of Noise-to-Image and Image-to-Image GANs

Detta är en Master-uppsats från Linköpings universitet/Statistik och maskininlärning

Författare: Lennart Schilling; [2020]

Nyckelord: Generative Adversarial Network; GAN;

Sammanfattning: Generative Adversarial Networks (GANs) have attracted much attention because of their ability to learn high-dimensional, realistic data distributions. In the field of medical imaging, they can be used to augment the often small image sets available. In this way, for example, the training of image classification or segmentation models can be improved to support clinical decision making. GANs can be distinguished according to their input. While Noise-to-Image GANs synthesize new images from a random noise vector, Image-To-Image GANs translate a given image into another domain. In this study, it is investigated if the performance of a Noise-To-Image GAN, defined by its generated output quality and diversity, can be improved by using elements of a previously trained Image-To-Image GAN within its training. The data used consists of paired T1- and T2-weighted MR brain images. With the objective of generating additional T1-weighted images, a hybrid model (Hybrid GAN) is implemented that combines elements of a Deep Convolutional GAN (DCGAN) as a Noise-To-Image GAN and a Pix2Pix as an Image-To-Image GAN. Thereby, starting from the dependency of an input image, the model is gradually converted into a Noise-to-Image GAN. Performance is evaluated by the use of an independent classifier that estimates the divergence between the generative output distribution and the real data distribution. When comparing the Hybrid GAN performance with the DCGAN baseline, no improvement, neither in the quality nor in the diversity of the generated images, could be observed. Consequently, it could not be shown that the performance of a Noise-To-Image GAN is improved by using elements of a previously trained Image-To-Image GAN within its training.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)