Spectrum Sensing Techniques for 2-hop Cooperative Cognitive Radio Networks : Comparative Analysis

Detta är en Master-uppsats från Blekinge Tekniska Högskola/Sektionen för ingenjörsvetenskap

Sammanfattning: Spectrum sensing is an important aspect of cognitive radio systems. In order to efficiently utilize the spectrum, the role of spectrum sensing is essential in cognitive radio networks. The transmitter detection based techniques: energy detection, cyclostationary feature detection, and matched filter detection, is most commonly used for the spectrum sensing. The Energy detection technique is implemented in the 2-hop cooperative cognitive radio network in which Orthogonal Space Time Block Coding (OSTBC) is applied with the Decode and Forward (DF) protocol at the cognitive relays. The Energy detection technique is simplest and gives good results at the higher Signal to Noise Ratio (SNR) values. However, at the low SNR values its performance degrades. Moreover, each transmitter detection technique has a SNR threshold, below which it fails to work robustly. This thesis aims to find the most reliable and accurate spectrum sensing technique in the 2-hop cooperative cognitive radio network. Using Matlab simulations, a comparative analysis of three transmitter detection techniques has been made in terms of higher probability of detection. In order to remove the shortcomings faced by all the three techniques, the Fuzzy-combined logic sensing approach is also implemented and compared with transmitter detection techniques.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)