Modelling user interaction at scale with deep generative methods

Detta är en Master-uppsats från KTH/Skolan för elektroteknik och datavetenskap (EECS)

Sammanfattning: Understanding how users interact with a company's service is essential for data-driven businesses that want to better cater to their users and improve their offering. By using a generative machine learning approach it is possible to model user behaviour and generate new data to simulate or recognize and explain typical usage patterns. In this work we introduce an approach for modelling users' interaction behaviour at scale in a client-service model. We propose a novel representation of multivariate time-series data as time pictures that express temporal correlations through spatial organization. This representation shares two key properties that convolutional networks have been built to exploit and allows us to develop an approach based on deep generative models that use convolutional networks as backbone. In introducing this approach of feature learning for time-series data, we expand the application of convolutional neural networks in the multivariate time-series domain, and specifically user interaction data. We adopt a variational approach inspired by the β-VAE framework in order to learn hidden factors that define different user behaviour patterns. We explore different values for the regularization parameter β and show that it is possible to construct a model that learns a latent representation of identifiable and different user behaviours. We show on real-world data that the model generates realistic samples, that capture the true population-level statistics of the interaction behaviour data, learns different user behaviours, and provides accurate imputations of missing data.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)