Thermoset biopolymer reinforced with carbon-nanotubes

Detta är en M1-uppsats från Högskolan i Borås/Akademin för textil, teknik och ekonomi

Sammanfattning: Compared to conventional fibers, carbon nanotubes possess several significant properties, which make them as an excellent alternative reinforcement in multi-functional material industry. In this study, the possibility of dispersion of the multi-wall carbon nanotube (MWCNTs) in a thermoset bio-based resin (synthesized based on end-functionalized glycerol-lactic acid oligomers, GLA, at university of Borås) was investigated. Furthermore, the addition of the MWCNTs as reinforcement to improve the mechanical and thermal properties of was investigated. The nanocomposites were prepared in three different concentrations of MWCNTs, 0.3 wt.%, 1.0 wt.%, and 2.0 wt.%, and each sample was prepared using three different dispersion methods such as the high speed mixer(HSM), the ultra-sonication (US), and a combined method of HSM & US. The mechanical and thermal properties were analyzed by flexural test, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). The results confirm that the nanotubes can be dispersed in GLA but the cured nanocomposite didn’t exhibit any considerable improvement in their thermal properties. Considering to the mechanical properties, the addition of 0.3 wt. % MWCNTs to the GLA increased the flexural strength a little but increasing the nanotubes to 1.0 wt. % decreases the flexural strength to almost 50%. This is mainly due to increase in the brittleness of the produced nanocomposites. Both the distribution methods dispersed the nanomaterials in the matrix initially but they are not efficient enough to stop the re-agglomeration which leads to undesired curing dynamics and low efficiency. Thus, these dispersion methods need to be optimized for improvement of nanocomposites’ properties.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)