Second Life Batteries Faciliating Sustainable Transition in the Transport and Energy Sectors? : An Exploratory Field Study in Colombia

Detta är en Master-uppsats från KTH/Skolan för industriell teknik och management (ITM); KTH/Skolan för industriell teknik och management (ITM)

Sammanfattning: The increasing number of vehicles in Colombian cities have resulted in alarmingly low quality of air, further resulting in increasing health issues. One potential solution to this issue could be a shift from ICEVs (internal combustion engine vehicles) to EVs (electric vehicles). However, EVs in Colombia are still very expensive, an issue that needs to be addressed in order for the EV market to increase enough to be able address the issue of low air quality in cities. One way of overcoming these cost barriers could be through implementation of a market for SLB (second life batteries), meaning that a battery retired from usage in EVs would be remanufactured, resold and reused in another application. Through SLB, the owner cost of EVs could potentially be decreased. SLB could also help improve the case for nondispatchable renewable energy sources by providing low cost BESS (battery energy storage solutions). Thus, SLB has the potential to facilitate sustainable transition within both the transport and the energy sector. This thesis aims to assess the potential of SLB in Colombia. This is done through a literature review where the current state of SLB is investigated, several interviews with potential stakeholders for a SLB market in Colombia, and a techno-economic assessment of four potential BESS applications in Colombia. The literature review provides with current knowledge and state of SLB in general. The interviews provide important insight to potential stakeholders’ view on SLB for the specific case of Colombia. The techno-economic assessment includes a sensitivity analysis aiming to provide insights in which factors, such as e.g. battery purchasing price or charging cost, that that gives rise to the largest impact on feasibility of SLB. Findings from the interviews shows a strong collective commitment from the interviewees to working towards cleaner air, resulting in high engagement and collaborative efforts between stakeholders for the SLB case. The main issue highlighted by stakeholders regards technoeconomic uncertainties of SLB. Findings from the techno-economic assessment indicates that SLB is viable for larger applications such as BESS at solar farms, but not for smaller applications such as backup power in residential buildings. However, SLB is not deemed to be a game changer for either application, and there are still many uncertainties regarding both technological and economic aspects that needs to be further investigated. The sensitivity analysis shows that the factors resulting in the highest impact on feasibility of SLB is battery SOH (state of health) at the beginning of SLB usage, and battery and repurposing cost. It will be hard to address both of these factors simultaneously due to a higher SOH would render higher battery prices, and vice versa. The findings from the thesis shows that SLB can facilitate sustainable transition within both the transport and energy sectors but is not to be considered a game changer for these sectors. However, even though SLB’s contribution to sustainable transition is not revolutionary, it is still necessary from a sustainability perspective. Given the environmental footprint of EV batteries and the amount of hazardous waste retired EV batteries will give rise to, circular economy must be pursued.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)