Gate driver solutions for high power density SMPS using Silicon Carbide MOSFETs

Detta är en Master-uppsats från Mittuniversitetet/Institutionen för elektronikkonstruktion

Sammanfattning: Discrete silicon carbide (SiC) power devices have unique characteristics that outpace those of silicon (Si) counterparts. The improved physical features have provided better faster switching, greater current densities, lower on-resistance, and temperature performances. However, there is lack of suitable commercial gate drivers that are compatible for high-voltage, and high-speed devices. There has been a great research effort required for the advancement of gate drivers for high voltage SiC transistors. A drive circuit for a SiC MOSFET needs to be optimized in normal operation to give best efficiency and same drive circuit should secure the MOSFET under unsuitable conditions. To ensure the rapid switching of these advanced SiC MOSFETs, a gate driver capable of providing the high current capability is required. In this work, three different high-power-density, high-speed, and high-noise-immunity gate driver modules for 10 kV SiC MOSFET were built and optimized.  Double-pulse test was developed for the dynamic characterization of SiC MOSFETs and gate drivers. This setup provided clean measurements of DUT voltage and current under well-defined conditions and correlated to simulation results. Designed gate drivers have thoroughly investigated to test and compare it with our future design. The influential parameters such as dV/dt, dI/dt, and gate driving capability of gate driver were adjusted according to the requirements. The short circuit protection test was performed to check the reliability of driver modules in worst conditions. Furthermore, a DC-DC converter was designed and tested with the advanced gate drivers. The driver modules were tested in designed converter under different load conditions and influential parameters were successfully demonstrated. The driver modules effectively helped in reducing the EMI and switching losses. These designed gate drivers and prototype converter provide all the attractive features and can be widely implemented in industrial applications for energy efficient systems.  

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)