Characterization of GaNbased HEMTs for power electronics

Detta är en Master-uppsats från KTH/Skolan för elektroteknik och datavetenskap (EECS)

Sammanfattning: Gallium nitride (GaN) based high electron mobility transistors (HEMTs) are promising for power electronic applications due to their high breakdown voltage and power efficiency compared to Si-based power devices. As known, the design of the HEMT has high impact on the performance of the devices. In this project various GaN HEMTs on SiC substrate with different design configurations are characterized and investigated. These HEMTs are designed and fabricated by the Research Institutes of Sweden (RISE). The important properties of the HEMTs such as contact resistance, current density, capacitance, and breakdown voltage are characterized and emphasized. The uniformity of the contact resistance of the devices located across a 4’’ wafer is investigated, which reveals the lowest contact resistance of 4.3Ω·mm at the center of the wafer. The highest maximum current density of the devices is 1.15A/mm, and the maximum current scales with the gate dimensions of the devices. The gate capacitance of the devices is between 0.1 and 0.6pF under 1MHz. The gate insulation breakdown voltage of the devices is above 40V and the drain to source breakdown voltage is higher than 360V. Based on the results, discussions about the effects of the designs on the device performance are provided. Suggestions for further improvement of the device performance are given.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)