Biomarker Discovery in Diabetic Nephropathy by Targeted Metabolomics

Detta är en Master-uppsats från Institutionen för fysik, kemi och biologi

Sammanfattning: Diabetic nephropathy is a chronic kidney disease and one of the more severe complications from diabetes mellitus type 2. The glomerular and tubular dysfunctions usually lead to end stage renal disease and the treatments of these patients (dialysis, kidney transplants) are a huge economic burden for the society. Due to an epidemiologic increase of type 2 diabetes, conventional diagnostic markers like creatinine and albumin are not sufficient, since they are only able to identify already existing kidney damage. With targeted metabolomics, the analysis of small molecules produced from metabolism, this project aimed at finding novel and more sensitive metabolic biomarkers from several different classes of metabolites. The different assays were performed with flow injection analysis, high performance liquid chromatography, gas chromatography and mass spectrometry, and with principal component analysis and discriminant analysis, up-and down-regulated metabolites could be identified and their respective biochemical pathways, if possible, explained. In diabetics significantly elevated concentrations of very long chain fatty acids (impaired peroxisomal β-oxidation), urinary sugars and acylcarnitines in plasma could be recognized. Markers indicating kidney damage included significantly increased plasma concentrations of asymmetric dimethylarginine (inhibition of nitric oxide synthase resulting in decreased endothelial functionality) and histamine (indication of uremic pruritus). Oxidative stress was also found to be a potential prognostic marker as indicated by the raised methionine-sulfoxide to methionine ratio in nephrotic patients. To summarize, this project succeeded in identifying metabolic biomarkers both for diabetes type 2 and nephropathy, which in the future might become important tools in slowing down progression or diagnosing these diseases.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)